Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Main subject
Language
Document Type
Year range
1.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.09.28.311480

ABSTRACT

COVID-19 vaccines are being developed urgently worldwide, among which single-shot adenovirus vectored vaccines represent a major approach. Here, we constructed two novel adenovirus vectored COVID-19 vaccine candidates on simian adenovirus serotype 23 (Sad23L) and human adenovirus serotype 49 vectors (Ad49L) carrying the full-length gene of SARS-CoV-2 spike protein (S), designated Sad23L-nCoV-S and Ad49L-nCoV-S vaccines, respectively. The immunogenicity elicited by these two vaccine strains was individually evaluated in mice. Specific humoral and cellular immune responses were proportionally observed in a dose-dependent manner, and stronger response was obtained by boosting. Furthermore, five rhesus macaques were intramuscularly injected with a dose of 5x109 PFU Sad23L-nCoV-S vaccine for prime vaccination, followed by boosting with 5x109 PFU of Ad49L-nCoV-S vaccine at 4-week interval. Three macaques were injected with Sad23L-GFP and Ad49L-GFP vectorial viruses as negative controls. Both mice and macaques tolerated well the vaccine inoculations without detectable clinical or pathologic changes. In macaques, prime-boost vaccination regimen induced high titers of 103.16 S-binding antibody (S-BAb), 102.75 cell receptor binding domain (RBD)-BAb and 102.38 neutralizing antibody (NAb) to pseudovirus a week after boosting injection, followed by sustained high levels over 10 weeks of observation. Robust IFN-{gamma} secreting T-cell response (712.6 SFCs/106 cells), IL-2 secreting T-cell response (334 SFCs/106 cells) and intracellular IFN-{gamma} expressing CD4+/CD8+ T cell response (0.39%/0.55%) to S peptides were detected in the vaccinated macaques. It was concluded that prime-boost immunization with Sad23L-nCoV-S and Ad49L-nCoV-S vaccines can safely elicit strong immunity in animals in preparation of clinical phase 1/2 trials.


Subject(s)
COVID-19
2.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.06.16.20133157

ABSTRACT

BackgroundRapid COVID-19 diagnosis in hospital is essential for patient management and identification of infectious patients to limit the potential for nosocomial transmission. The diagnosis of infection is complicated by 30-50% of COVID-19 hospital admissions with nose/throat swabs testing negative for SARS-CoV-2 nucleic acid, frequently after the first week of illness when SARS-CoV-2 antibody responses become detectable. We assessed the diagnostic accuracy of combined rapid antibody point of care (POC) and nucleic acid assays for suspected COVID-19 disease in the emergency department. MethodsWe developed (i) an in vitro neutralization assay using a lentivirus expressing a genome encoding luciferase and pseudotyped with spike (S) protein and (ii) an ELISA test to detect IgG antibodies to nucleocapsid (N) and S proteins from SARS-CoV-2. We tested two lateral flow rapid fingerprick tests with bands for IgG and IgM. We then prospectively recruited participants with suspected moderate to severe COVID-19 and tested for SARS-CoV-2 nucleic acid in a combined nasal/throat swab using the standard laboratory RT-PCR and a validated rapid POC nucleic acid amplification (NAAT) test. Additionally, serum collected at admission was retrospectively tested by in vitro neutralisation, ELISA and the candidate POC antibody tests. We evaluated the performance of the individual and combined rapid POC diagnostic tests against a composite reference standard of neutralisation and standard laboratory based RT-PCR. Results45 participants had specimens tested for nucleic acid in nose/throat swabs as well as stored sera for antibodies. Using the composite reference standard, prevalence of COVID-19 disease was 53.3% (24/45). Median age was 73.5 (IQR 54.0-86.5) years in those with COVID-19 disease by our reference standard and 63.0 (IQR 41.0-72.0) years in those without disease. The overall detection rate by rapid NAAT was 79.2% (95CI 57.8-92.9%), decreasing from 100% (95% CI 65.3-98.6%) in days 1-4 to 50.0% (95% CI 11.8-88.2) for days 9-28 post symptom onset. Correct identification of COVID-19 with combined rapid POC diagnostic tests was 100% (95CI 85.8-100%) with a false positive rate of 5.3-14.3%, driven by POC LFA antibody tests. ConclusionsCombined POC tests have the potential to transform our management of COVID-19, including inflammatory manifestations later in disease where nucleic acid test results are negative. A rapid combined approach will also aid recruitment into clinical trials and in prescribing therapeutics, particularly where potentially harmful immune modulators (including steroids) are used.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL